
Lung Transplant Digital Care

Detecting graft dysfunction in lung transplant recipients using home spirometry during the COVID-19 Pandemic

Steven Hays MD Professor of Medicine Medical Director, Advanced Lung Disease and Lung Transplant UCSF

Detecting graft dysfunction in lung transplant recipients

- Early Detection of both Acute Allograft Dysfunction and Chronic Lung Allograft Dysfunction is important as delays in detection / treatment may lead to worse outcomes.
- Spirometry remains the principal method for detecting graft dysfunction in outpatient lung transplant recipients

COVID-19 Impact on Spirometry

- Aerosol Generating Procedures pose a significant risk of COVID-19 transmission
- Nationwide most PFT labs either closed
- Barriers to In-Lab Spirometry:
 - COVID-19
 - Requires travel
 - Variability between labs
 - Frequency of measurement limited
 - Getting outside spiro data intercalated with our data
 - Review of outside spiro is challenging/requires fax/personnel

Detecting graft dysfunction in lung transplant recipients using home spinometry potential benefits

- Less risk Keeps AGPs at home
- Less Travel
- Increased Frequency
- Portable Data
- Home management
- Barriers
 - Compare to Lab Measure?
 - How to interpret?
 - How to trouble shoot?
 - Education / Coaching?

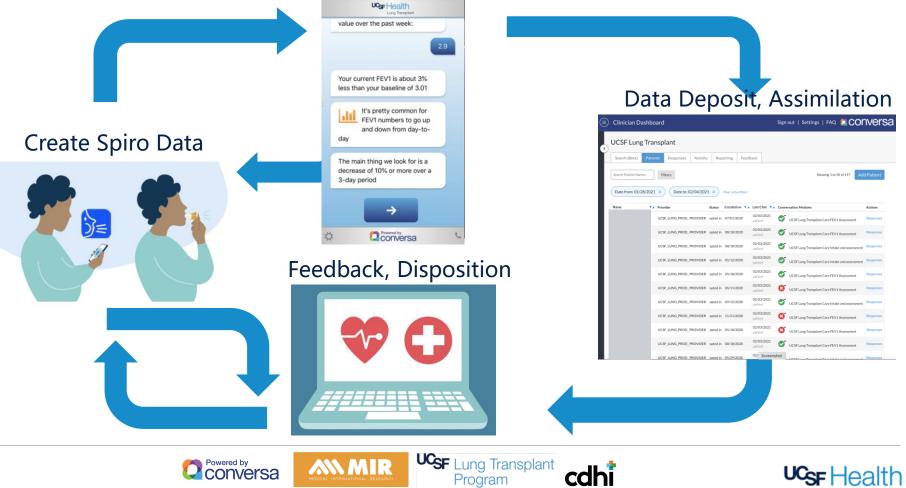
Prior experience with home spirometry in Lung Transplantation

- Adherence to home spirometry generally decreases over time due to multiple factors
 - Lack of understanding
 - Lack of feedback
 - Lack of engagement
- Non-adherence to home spirometry is related to a decreased freedom from BOS

Goals of home spirometry

- Obtain spirometry on a weekly basis for the first year and monthly basis after one year to detect graft dysfunction
- Obtain spirometry in real time to assess remote symptoms
- Identify changes in lung function earlier
 - Diagnose acute graft dysfunction
 - Diagnose CLAD earlier
- Provide education to patients
- Collect feedback
- Iterate based on experience and feedback

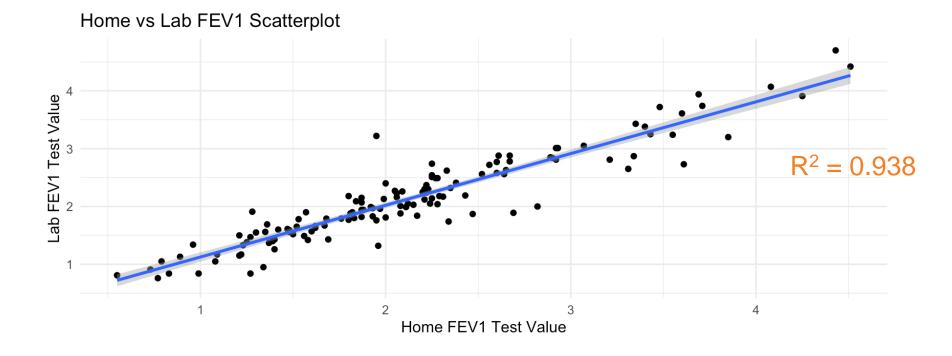
Engagement Platform



Engage, Collect, Feedback

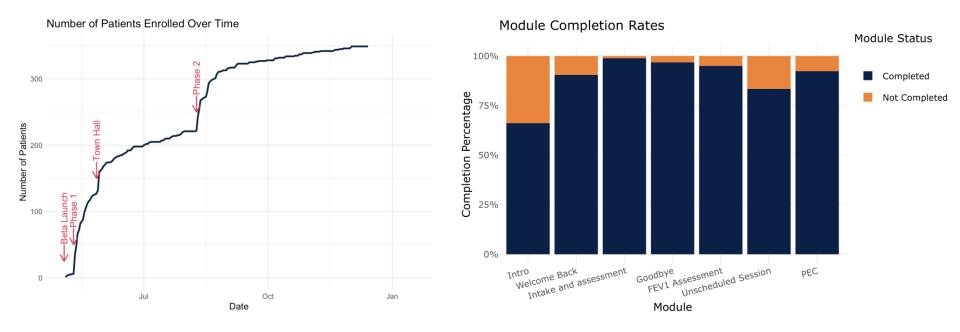
Program

UC_{SF} Health



Physician Dashboard

Patient Name	Date of Birth \downarrow	Values Reported	Median (IQR)	Baseline	Most Recent	FEV1 Trend
		128	0.46 (0.42 - 0.5)	1.27	0.39	la
		73	2.91 (2.88 - 3)	5.4	2.78	hallow
		67	1.89 (1.85 - 1.92)	2.26	1.87	Monte
		58	0.67 (0.58 - 0.69)	0.75	0.72	hum
		56	2.36 (2.17 - 2.57)	3.21	1.88	hhm
		54	1.25 (1.23 - 1.26)	1.43	1.25	M. Mary
		52	1.54 (1.49 - 1.69)	1.88	1.52	www
		48	1.88 (1.8 - 2)	2.21	2.13	Mun
		46	2 (1.97 - 2.04)	2.16	2.07	more
		45	2.4 (2.35 - 2.44)	2.51	2.37	Mm M.
		45	2.19 (2.08 - 2.24)	2.52	2.31	humon



Home spirometry highly correlates with Lab spirometry

UCSF Health

Enrollment and Engagement

April: Development and First patient beta testers

May: Marketing release to patients that received first 200 spirometers

May-July: Print materials sent to latest cohe with next shipment of 200 spirometers
--

August: Email Marketing and bulk enrollment

February: Integration of alerts into EMR

- Newsletter for existing patients August 6th
- Information re: bulk enrollment of remaining 200 patients August 10th
 - Transfer FEV1 data into EMR
 - Allows for easier dispo planning

Next: Disposition (Telehealth)

· Goal state allows for engagement platform to prompt patient to self schedule urgent follow up

Summary

- We rapidly developed a home spirometry program to help manage lung transplant recipients during COVID-19
- The program provides for engagement, data collection and feedback
- The data generated has a high degree of fidelity
- We continue to iterate to improve user experience and engagement
- The future state will allow for more rapid clinical assessments utilizing both Telehealth self scheduling and onsite evaluations

